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Abstract. The fully packed loop model of closed paths covering the honeycomb lattice is
studied through its identification with theslq (3) integrable lattice model. Some known results
from the Bethe ansatz solution of this model are reviewed. The free energy, correlation length,
and the ensemble average loop length are given explicitly for the many-loop phase. The results
are compared with the known result for the model’s surface tension. A perturbative formalism
is introduced and used to verify results.

1. Review of the FPL model

The fully packed loop (FPL) model is a statistical model where the ensemble is the set of
all combinations of closed paths on the honeycomb lattice that visit every vertex and do
not intersect. The Boltzmann weight of such a filling set of paths is just the exponential of
the number of paths, i.e. the energy of a configuration is the number of closed loops used
to cover the lattice. An example of a fully packed configuration of loops on this lattice is
shown in figure 1. The partition function for this model may be represented as

ZFPL(n) =
∑
C

nP(C) (1.1)

where the sum is over allC, the coverings of the vertices of the hexagonal lattice by closed
nonintersecting paths,P(C) is the number of paths in the coveringC, andn is a generalized
activity.

The partition function (1.1) is apparently the generating function for the numbers of
ways to cover the hexagonal lattice by any number of closed paths. Its calculation in the
thermodynamic limit is an interesting combinatorial problem.

This model is equivalent to a colouring problem solved by Baxter in 1970 [1]. The
loop form of the problem was introduced by Reshetikhin [2] and by Blöte and Nienhuis
[3]. It was originally studied for its interest as the low-temperature limit of the O(n) vector
lattice models [4, 5]. In this limit, the dimensionality of vectorsn is just the activityn in
equation (1.1). It has been applied to random-walk problems [6], and more recently its
operator spectrum and corresponding scaling exponents have been deduced [6–8].

The FPL model is solvable because of an identification with the integrable lattice model
associated to the quantum groupslq(3) [9]. This integrable model is a vertex model on the
square lattice where each link of the lattice can be in one of three states, and the vertex
weights are given by theR-matrix for slq(3) as in figure 2. TheR-matrix depends on a
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Figure 1. An example of a fully packed loop configuration. With periodic boundary conditions,
this configuration has 11 loops.

Figure 2. The definition of vertex weights in the integrable lattice model associated toslq (d+1).
γ andθ are parameters of the model. States on edges are labelled by roman indices with(d +1)

possible values. In the formula,1ab = a−b
|a−b| + 2b−a

d+1 .

deformation parameterγ = log(q), as well as a spectral parameterθ typical of integrable
theories. Denoting theslq(3) partition function asZslq (3)(γ, θ), the precise idenfication is

ZFPL(eγ + e−γ ) = (eγ − e−γ )−N lim
θ→−γ

(eθeγ − e−θe−γ )Zslq (3)(γ, θ) (1.2)

whereN is the volume of the lattice (the number of hexagonal faces). Since the model
is integrable, much exact information can be derived. In particular, the model’s Bethe
equations have been constructed and solved.

One of the more important results that have been derived in this way is the existence of
a phase transition in the model (1.1) atn = 2 [1, 2]. At largern, larger numbers of loops
are favoured and at smallern configurations with fewer loops are favoured. It has been
conjectured that this transition is between a large-n phase where the average loop length is
finite and a small-n phase where this average is infinite.

In section 3 a simple relation between the free energy of the FPL model and the ensemble
average length of loops is derived. From the known solution to the Bethe equations of the
slq(3) integrable lattice model, the free energy is identified and used to graph the exact
value of the average loop length as a function ofn.

Identifying n = eγ + e−γ , it becomes apparent thatn > 2 corresponds to the integrable
model forγ real and 0< n < 2 corresponds toγ purely imaginary. The former phase is
known [9] to be massive, in the sense that there is a gap in the spectrum of eigenvalues
of the transfer matrix between the leading eigenvalue and the next-leading eigenvalue. By
standard arguments [11], this implies a finite correlation length. The gap tends to zero as
γ goes to zero, showing thatn = 2 is a critical point of the model (1.1).

In section 4 this correlation length is studied by considering the spectrum of eigenvalues
of this transfer matrix. The spectrum may be deduced directly from the model’s Bethe
equations. In the case that the transfer matrix is symmetric and therefore has real
eigenvalues, the correlation length is related to the maximum eigenvalue3max and next-
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leading eigenvalue31 by

ξ−1 = log
3max

31
. (1.3)

2. Review of theslq(3) integrable model

The R-matrix of the slq(3) quantum group is a 32 × 32 matrix that may be interpreted
as a matrix of Boltzmann weights of a vertex model on the square lattice as shown in
figure 2. Since this matrix satisfies the Yang–Baxter equation, the associated transfer matrix
commutes with itself evaluated at differing values of the spectral parameter and the model
is exactly solvable by a recursive set of two nested Bethe ansätze [9].

Eigenvalues of the transfer matrix in finite sizeN are parametrized by rootsλk
j , k = 1, 2

and j = 1 . . . pk of a system of Bethe equations. The eigenvalue3
p1p2
N is given in terms

of these roots by

3
p1,p2
N =

p1∏
j=1

sinh(iλ1
j − θ + 1

2γ )

sinh(iλ1
j − θ − 1

2γ )
+

[
sinh(θ)

sinh(θ + γ )

]N p1∏
j=1

sinh(iλ1
j − θ − 3

2γ )

sinh(iλ1
j − θ − 1

2γ )
3p2

p1
(2.1)

3p2
p1

=
p2∏

j=1

sinh(iλ2
j − θ)

sinh(iλ2
j − θ − γ )

+
p1∏

j=1

sinh(iλ1
j − θ − 1

2γ )

sinh(iλ1
j − θ − 3

2γ )

p2∏
j=1

sinh(iλ2
j − θ − 2γ )

sinh(iλ2
j − θ − γ )

(2.2)

where3
p1
p2 is a convenient intermediate symbol. In the thermodynamic limit the roots are

described by distributionsρk(λ) on the interval [−π/2, π/2]. The distribution corresponding
to the maximum eigenvalue and which yields the free energy is

ρk
max(λ) =

∞∑
m=−∞

e2imλ 1

π

sinh[(3 − k)mγ ]

sinh[3mγ ]
. (2.3)

For eigenvalues near the maximum eigenvalue, the changes in this distribution are
parametrized by the locations of holesθ

q

h , q = 1, 2, h = 1 . . . Nq , according to

ρ1(λ) − ρ1
max(λ) =

∞∑
m=−∞

e2imλ
2∑

q=1

(
− 1

π

)
e|mγ | sinh[(3 − q)mγ ]

sinh[3mγ ]

Nq∑
h=1

e−2imθ
q

h (2.4)

ρ2(λ) − ρ2
max(λ) =

∞∑
m=−∞

e2imλ
2∑

q=1

(
− 1

π

)
e|mγ | sinh[qmγ ]

sinh[3mγ ]

Nq∑
h=1

e−2imθ
q

h . (2.5)

The numbers of holes are constrained to satisfy the relation,

2∑
q=1

qNq = multiple of 3. (2.6)

In the range of parametersθ > −γ /2 the bracketed quantity in equation (2.1) vanishes in
the thermodynamic limit. In this case the formulae (2.1), (2.4) may be combined to yield a
compact formula for eigenvalues,

log3 =
∫ π/2

−π/2
ρ1(λ) log

[
sinh(iλ − θ + 1

2γ )

sinh(iλ − θ − 1
2γ )

]
dλ. (2.7)
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3. Free energy and average loop length

The formulae of the preceding section in the caseθ = −γ yield directly the free energy
density of the model (1.1) for then > 2 phase as the logarithm of the maximum eigenvalue
of the transfer matrix, rescaled by the factor of equation (1.2). This free energy was actually
derived in 1970 by Baxter [1] as the solution to a weighted three-colouring problem on the
honeycomb lattice. The free energy density of the FPL model in then > 2 phase is

FFPL(n) ≡ lim
N→∞

1

N
logZFPL(n)

= log

{
q1/3

∞∏
m=1

(1 − q−6m+2)2

(1 − q−6m+4)(1 − q−6m)

}
(3.1)

wheren = q + q−1, andq = eγ > 1. This function has an essential singularity atq = 1.
The free energy forn < 2 and with periodic boundary conditions is given in integral form
in [6].

It is interesting to note that for both phases, the free energy density gives the ensemble
average length of loops. Since a configurationC on a lattice ofN faces has 2N occupied
links, the total length of loops is always 2N . The average loop length of configurationC

is therefore 2N/P (C). If we define the ensemble average loop lengthLN(n) by

LN(n) = 1

ZFPL(n)

∑
C

2N

P(C)
nP(C) (3.2)

then from inspection of equation (1.1) it is clear that

d

dn
[LN(n)ZFPL(n)] = 2N

n
ZFPL(n). (3.3)

The general solution to this equation can be written up to quadrature by direct integration:

LN(n) = 1

ZFPL(n)

∫ n

C

2N

n′ ZFPL(n′) dn′ (3.4)

where the lower limit of integration is an undetermined constant. In terms of the free energy
densityFFPL = (1/N) logZFPL, this becomes

LN(n) = 2Ne−NFFPL(n)

∫ n

C

eNFFPL(n′)

n′ dn′. (3.5)

The integral in equation (3.5) can be evaluated by steepest descent. The result is

LN(n) = 2N

n
exp

(
−Nn

dFFPL

dn
(n)

) [
exp

[
Nn′ dFFPL

dn
(n′)

]
N dFFPL

dn
(n′)

]n

C

. (3.6)

The constant of integration may now be determined from the known value ofLN(n) at
n → ∞. As will be shown in section 5, in this limitZN(n) ' 3nN/3, dFFPL

dn
(n) ' 1/3n,

andLN(n) = 6. These imply thatC = −∞, so in the thermodynamic limit

LN(n) = 2

n dFFPL

dn

. (3.7)

In this calculation we have neglected corrections of the order of 1/N to LN(n).
A graph of the ensemble average loop length versusn in the large-n phase is shown in

figure 3. This verifies the conjecture of [2] that loop length diverges at the critical point.
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Figure 3. This is a graph of the average loop length of the FPL model versusn, the fugacity
of loops. The critical point is atn = 2.

4. Correlation length

To obtain the correlation length, we must compute the expression (2.7) for the minimal hole
distribution. Whend = 2, there are two choices for the numbersNq which parametrize
excited states in equation (2.4). EitherN1 = 3 andN2 = 0, or N1 = 1 andN2 = 1. In each
case, the eigenvalue gap is minimized for holes atθ

q

h = π
2 where the sum in equation (2.4)

after integration in (2.7) is oscillatory. The transfer matrix of the model is symmetric at
the point θ = − 1

2γ , and its eigenvalues are then real. After settingθ to this value, the
correlation length of the model is given by equation (1.3).

Considering the caseN1 = 3 andN2 = 0, we denote the next-leading eigenvalue for
this hole distribution as330. The equation (2.7) together with the formula for densities (2.4)
gives

log
330

3max
=

∞∑
m=−∞

φm

(
− 1

π

)
e|mγ |3(−1)m

sinh(2mγ )

sinh(3mγ )
(4.1)

whereφm are the integrals over roots,

φm ≡
∫ π/2

−π/2
e2imλ log

[
sinh(iλ + 1

2γ − θ)

sinh(iλ − 1
2γ − θ)

]
dλ. (4.2)

The integral in equation (4.2) can easily be performed by contour integration. After
introducing the variablesq = eγ andz = eθ , the result for− 1

2γ < θ < 0 is

∫ π/2

−π/2
e2imλ log

[
sinh(iλ + 1

2γ − θ)

sinh(iλ − 1
2γ − θ)

]
dλ =


π

m
[1 − (z2q−1)m] m > 0

−2π logz m = 0
π

m
[1 − (z2q)m] m < 0.

(4.3)

Substituting this result into equation (4.1) gives

log
330

3max
= 2 logz + 3

∑
m>0

(−1)m

m
(z2m − z−2m)

(
q2m − q−2m

q3m − q−3m

)
. (4.4)
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After expanding the demoninator of the summand in a power series inq−1, this may be
resummed to the form,

log
330

3max
= 2 logz − 3

∑
m>0

log

[
(1 + z2q−1q−6m)(1 + z−2q−5q−6m)

(1 + z−2q−1q−6m)(1 + z2q−5q−6m)

]
. (4.5)

This form is now convergent at the symmetric point,θ = − 1
2γ or equivalentlyz2 = q−1. We

may therefore evaluate it there to obtain the correlation length according to equation (1.3),

ξ−1 = 3 log

{
q1/3

∏
m>0

(1 + q2q−6m)(1 + q4q−6m)

(1 + q−6m)(1 + q6q−6m)

}
. (4.6)

This is the desired result, the correlation length of the FPL model wheren = q + q−1 and
q > 1, or equivalentlyq = +√

n2 − 4.
The other possible choice of holes,N1 = 1 andN2 = 1 may be computed in the same

way to give

log
3max

311
= log

{
q

∏
m>0

(1 + q2q−6m)(1 + q3q−6m)(1 + q3q−6m)(1 + q4q−6m)

(1 + q−6m)(1 + qq−6m)(1 + q5q−6m)(1 + q6q−6m)

}
. (4.7)

This quantity is greater than (4.6) for allq > 1, so it is not the inverse correlation length. For
largeq, the inequality may be seen by considering the limiting forms of expressions (4.6)
and (4.7). Rigorously, the multiplicands in (4.7) may be seen to be greater than those in
(4.6) term by term inm.

5. Perturbative analysis

The FPL model has a natural large-n expansion which allows simple perturbative
verifications of results.

Whenn is large, the dominant configurations are those with large numbers of loops. The
perturbative procedure is to approximate the sum over states by including the configurations
with the highest numbers of loops.

On a hexagonal lattice with number of facesN a multiple of three, there are three
configurations with the maximum possible number of loops. In these states, one out of
every three faces has a small loop around it and these small loops lie on a triangular lattice.
A sample is shown in figure 4. These three configurations differ by translations and each
hasN/3 loops.

The smallest change in the number of loops that can be made is to introduce a defect
somewhere in one of the maximal configurations, as shown in figure 5. There are 2N/3
different such defects that can be introduced and each reduces the number of loops by two.

Introducing defects in this way, we can reach all possible configurations. To see that
this is so, we can represent a configuration by labelling the links on the lattice that do not
contain part of a path. One of every three links is unoccupied, and every vertex touches one
unoccupied link. These unoccupied links form a dimer configuration for the vertices of the
lattice. If we draw rhombuses around every dimer and interpret the resulting picture as the
projection of the edges of a stack of cubes, we see that a FPL configuration is equivalent
to a stack of cubes. Such an identification is shown in figure 6.

In this new representation, the action of inserting a defect is just the action of adding
or removing a cube. This identification is exhibited in figure 7. The result then follows
that since every stack of cubes can be made by adding or removing cubes, every FPL
configuration can be made from one of the maximal ones by inserting some combination
of defects.
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Figure 4. A sample from a configuration with the
maximum number of loops.

Figure 5. A configuration with two fewer than the
maximum number of loops.

Figure 6. An example of the identification of FPL
configurations and stacks of cubes. One rhombus is drawn
centred on each unoccupied link.

Figure 7. In the cube representation, introducing
a defect is adding or removing a cube.

To obtain an approximation for the free energy, consider first the maximal state shown
in figure 4. For a lattice ofN faces, this configuration has(N/3) loops. There are three
such configurations corresponding to the three-fold translational degeneracy of the state.
To lowest order thenZFPL = 3nN/3[1 + O(n−1)]. This result was used in section 3 to
determine the asymptotics of the average loop length.

Allowing defects, there are(2N/3) locations for a defect and each defect reduces the
number of loops by two. Defects may be applied in any number and in any combination,
giving the usual sum over disconnected diagrams. We can write this as the exponential of
the connected diagram (one defect) and we will be correct except for the effects of excluded
volumes which begin with two-defect connected diagrams and are therefore higher order.
To the next order,ZFPL = 3nN/3 exp[(2N/3)n−2] exp[O(n−4)].

Perturbatively calculating the FPL free energy, we see that

FFPL(n) = 1

3
log(n) + 2n−2

3
+ O(n−4) (5.1)

in conformity with Baxter’s result shown in equation (3.1).
This point of view incidentally leads to a simple expression for the entropy density of

the FPL configurations atn = 1. At this point, all configurations are weighted equally
and ZFPL is just the number of configurations, or the exponential of the entropy. Then
calculating the partition function is just the problem of counting the number of coverings
of the honeycomb lattice by paths, which is the number of different possible stacks of
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cubes, which is the old combinatorial problem of counting plane partitions. Elser [12] has
calculated the asymptotics of plane partitions for large arrays of numbers.

The result applied to this case is entirely dependent on the shape of the boundary,
even in the thermodynamic limit. While any FPL configuration is equivalent to a dimer
configuration in the bulk, at boundaries there may be vertices with less than three neighbours
and so it is possible for an FPL configuration to have no corresponding dimer configuration.
For a lattice ofN faces and the boundary condition that configurations must be equivalent
to a dimer configuration, the maximum entropy is obtained for a hexagon-shaped boundary
and in that case the partition function is asymptotically

ZFPL(1) = exp[N( 3
2 log 3− 2 log 2)]. (5.2)

6. Comparison with surface tension

The ground state of theslq(d) integrable lattice model is(d + 1)-fold degenerate. This
implies the existence of a notion of interfacial tensionS(γ ) away from the critical point
between regions of differing antiferromagnetic polarization. By considering finite-size
corrections, de Vega [10] has derived transcendental equations for this interfacial tension.

The asymptotic behaviour of the interfacial tension forγ → ∞ was extracted by deVega,
and the result is

S(γ ) = d

d + 1
γ + O(1). (6.1)

In the case of the FPL model,d = 2, n = eγ + e−γ , and

S(n) = 2
3 log(n) + O(1). (6.2)

This result may be compared with a perturbative calculation. Consider the sum over FPL
states at large-n with the constraint that boundary conditions are fixed to cause frustration
in the bulk, as in figure 8. The configuration in that figure has the maximum number of
loops possible and is the analogue of the configuration shown in figure 4. Denoting the
sum over defects in this configuration byZ′

FPL, the interfacial tension is defined to be the
change in free energy per unit length of the interface:

Z′
FPL

ZFPL

∼ e−LS (6.3)

whereL is the vertical size of the lattice.
For a lattice ofN faces, the maximum number of loops possible in the presence of the

constraint is(N/3) − (2L/3) instead of(N/3). The maximal state in the presence of the
constraint is now 3× 22L/3-fold degenerate, because there are(2L/3) locations near the

Figure 8. An interface separating two regions of differing polarization.
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interface where defects may be freely introduced without changing the number of loops. To
lowest order therefore,

ZFPL ' 3nN/3 (6.4)

Z′
FPL ' 3 × 22L/3n(N−2L)/3. (6.5)

Reading off the exponents, we have from equation (6.3) the result that

S(γ ) = 2
3 log(n) + O(1). (6.6)

Equation (6.6) is apparently consistent with the large-γ asymptotics derived in [10].
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